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INTERACTION OF STRUCTURE AND LIQUID
IN THE SOUND SUPPRESSOR SYSTEM

SUMMARY

An analysis of the interaction of structure and liquid of the Saturn V
sound suppressor system has been performed. For this reason the liquid re-
sponse in a rectangular container to translatory excitation has been determined
and was described by a mechanical analogon. It was found that more than eighty
percent of the liguid mass in the water reservoir sloshes for the fundamental
sloshing mode. The natural frequencies of the liquid are extremely low; the
fundamental frequency is in the vicinity of 0.2-0. 3 or 0. 4-0. 5 rad/sec depend-
ing on the orientation of the excitation. An analysis of the interaction of the
liquid and the sound suppressor structure revealed rather low coupled frequen-
cies of 0.22 and 0.74 rad/sec in longitudinal direction (y-direction) and about
0.5 and 6.7 rad/sec in the cross direction (z-direction). It was found that an
increase of stiffness does not pay off. Because the cross direction offers the
largest structural area, the response of the system to some winds has been
treated. Liquid and structural amplitudes are presented for a sinusoidal gust
wind of 13 m/sec amplitude, for rectangular pulses of various durations as well
as for exponentially decaying pulses of different decay magnitude.

SECTION I. INTRODUCTION

Through model tests employing live rocket engines it has been determined
that the most reliable and effective means to suppress the high-intensity low~
frequency noise generated by large space vehicle booster engines during test
firings is the injection of large quantities of water near the engine nozzle exit.
This reduces the kinetic energy of the high velocity gases. A reservoir of about
five million gallon capacity is necessary to supply the water for the suppression
of sound of the Saturn V rocket engines. The water must be supplied just below
the elevation of the engine exit plane which is almost 100 feet above grade (Fig, 1).

The operation of the sound suppressor or some wind forces on the total
system may cause destructive forces or uncontrollable conditions which could
lead to the malfunction of the sound suppressor or even to the destruction of the



total system. It is, therefore, necessary to investigate the motion of the liquid
in the container and its coupling with the elastic support structure to reveal the
integrity of the intended design and make recommendations for a final enhanced

system,

In the following, the response of the liquid in the container due to trans-
latory excitation is determined and is described as a mechanical analogon. From
this investigation it will be learned how many of the liquid vibration modes will
have to be included in the overall structural analysis. After the equations of
motion of the system have been derived, the coupled frequencies will be deter-
mined for various stiffnesses of the support structure. Forced undamped and
damped harmonic response of the system is studied and finally the response of
the system due to various wind inputs is derived.

SECTION Il. RESPONSE OF LIQUID TO TRANSLATORY EXCITATION

For the structural analysis of the sound suppressor system the response
of the liquid in the reservoir due to some outside excitation has to be known., It
is also important to know its natural frequencies. Because of the system design
only translatory excitation of the liquid container is probable. For this reason,
investigation is restricted to this type of excitation for a rectangular container
of infinite width (Fig. 2). If the liquid is considered incompressible, irrota-
tional and nonviscous, the velocity of the liquid can be described by the gradient
of a velocity potential, which because of the continuity equation must be a solution
of the Laplace equation

Vip =0 (2.1)
Qt

For translatory harmonic excitation in y-direction of the form y(t) =y e R
the boundary conditions are °

P it
—_— = i)
By y iste (2,2)

at the side walls y =0 and a



- =0 (2. 3)

at the container bottom x = -h. The free fluid surface condition is given by the
kinematic and dynamic conditions, expressing that the normal velocity of a fluid
particle at the free fluid surface is equal to the normal velocity of the free liquid
surface, and that the pressure at the free fluid surface is equal to the ambient
gas pressure, i.e., p =p . The dynamic condition is obtained from the linear-
ized unsteady Bernoulli equation and together with the linearized kinematic con-
dition, yields the free fluid surface condition

%% | 8% _
at *g x 0 (2. 4)
at the free fluid surface x = 0. A transformation

®(y, x, t) =|:¢>(y, x) + iQyoy:leiQt (2. 5)

yields homogeneous wall boundary conditions. The problem that has to be
solved now, therefore, is the Laplace equation V2¢ = 0 for the disturbance
potential ¢ with homogeneous wall boundary conditions.

% (2. 6)
oy

aty=0and a

9¢ _

o 0 (2.7)
at x = -h and the transformed free surface condition

9 .
g 22 a7 = 1% y (2. 8)



at x = 0.

A solution satisfying the Laplace equation and the wall boundary condition
(2.6 and 2.7) is given by

o coshIE% (x +£1J (mr )
y

Ply, x) =nloAn cosh[n—g—h] cos |

a
where the values An are unknown coefficients that shall be determined from the
free fluid surface condition (2. 8). Expanding y into a Fourier cosine series

2n - 1
cos|{——

[cle]
4a a
y= 'n2z (2n - 1)2
n=1

N

the expression (2. 8) yields

2n - 1
o © QoS |T———— Ty
nm nmh nm a 4a [ a _J
0 ftii QZ 40 — -Q3 L _ <
Z An o tanh( a ) }cos(a ) %y )5 znzi (2 - 1)

n=o

from which with the square of the circular natural frequency (see Table 1)

w2:gn_7r tanh(r—lﬂl); n=1, 2, ... (2.9)
n a a

(This is obtained for free oscillaticns of the liquid where y, is identically zero.
The equation (2. 8] is, therefore, satisfied for y, =0 and Q2 = wzn(w;), as can be
seen from the last equation before equation [2. 9]).

[¢]

T T o T N (O - ol .
"7z - P (@ -l )

a
=1 Q—- . =
A0 iy 25 s A2n 0 and Azn

The disturbance potential is, therefore,



‘ 4 i Q2 cosh ':(2_113'_1M (x + h] COS[_zn_—_j-MW
¢ (y, x) =-iy Qa(~ - —
© 2. m n=1 (Qz-wén_ 1) (2n - 1)2 cosh[zn—aimlﬂ

and the velocity potential yields

iQ
&(y, x, t) =iSZy0e1 t

i 2 coshl: {n-Hm |
(y 1)_'_42. Z Mon-1 I:Zn (2n-1)m ]
- 2 1.2
2’ o (’72n-1 |?2n 1[7r ]

(2. 10)

The free fluid surface displacement, the pressure distribution and the velocity
distribution, as well as the liquid force and moment can be determined from the
velocity potential by differentiations and integrations. The free liquid surface
displacement measured from the quiescent fluid surface is given by

(2n-1)7
772n 1 cos l: oA :l
-1) (2n - 1)2

(2.11)

@ ot a\ 4a v
X(y, t) =——y e (y-§)+7r_z Z
n=1

g 0 (n2n 1

The pressure distribution p = - pd&/9t - pgx is given by

h[—“‘ 4)m (x+h)]

p=pty e W((y-2 -2 ) =
° 2 ™ n=1 (2n-1)2 cosh(ﬁl-—i)l (1- 7 )
a 2n-1
osEZn;i[wy]



At the tank walls y = o and y = a the pressure yields

. * cosh[~—L(2n_ L (x+h):]r,2
_ o iRtJa  4a a 2n-1
py=o—_proe -2—+7r22 (2n-1)7w ) o
n=1 (2n-1)zcosh[b;‘—h](1-n;n 1)

- pgx (2.12)
and
‘0 o cosh[M (x+hJ n2
b =p522ye1 t%+4_§12 a , ‘2n-1
y=a (o] m n=1 (2n—1)2COSh[Mh] (1_772 )
a 2n-1
TP (2. 13)
At the container bottom x = -h the pressure distribution is given by
_ 2 it _ a
Phottom pe Yo® (y 2)
o cos[(Zn—ipry] nz
R 2 (2n-1)m )
n=1 (2n-1) cosl{ a h](i - 772n—1)
(2. 14)

Integration of the pressure components yields the fluid force and moment.
The force in y-direction (i.e., the force per unit width) is

which yields with m = pah as the liquid mass per unit width the expression

6



©  tanh [;)—zn'i ”h]nz
__ _ a 2n-1

n=1 (2n - 1)3 w(%) (1-n22n_1)

Fy = szyoel,Qt 1+ 2

) (2. 15)

The moment of the liquid about the center of gravity of the undisturbed fluid
is given by

=_r° h a a
My [h (pY'=a py=o) ("Hz)dx'fo Phottom (y'z) dy

and yields the expression

i
M = —maﬂzy e ¢
z o

=0

- [2n-1]7 ) 2 i 2 :l
L4 E _t?'_ni(ﬂg; o, * (mh/a) (2n-1)Lcosh[(2n- 1) th/a] ~ 1
‘73 =1 (2n - 1)3
2
. n2n—1
_ 2
(1= T'Zn—i)‘ . (2. 186)

The velocity distribution is given by

oy
. 2 (211—1!1['
1+2 Z Mon-1 (iosil s (x*h) sinE2n-- 1)w y]
Tn=1 (1—rén_1)(2n-1)cosh[(2nT—1)lﬂ 2




which represents the velocity in y-direction, and

‘ 2 . (211'—1!71' ]
o280 e Taneg SN TOR ]
x T Te oy (1-n;n_1)(2n-1)cosh[(—l~2n;1 "ﬂ

OSE Zn;i ! T y]

which is the velocity in x~direction.

From the results of this section the following is concluded: The natural
frequency (2, 8) of the liquid is inversely proportional to the length of the res-
ervoir, indicating that these values shall be very small. Since the liquid height
ratio h/a is very small, the effect of the hyperbolic tangent function is pronounced
for many of the lower vibration modes, and approaches with increasing mode
number n the value of unity. The first term in the free fluid surface elevation
(2.10) is the surface plane elevation caused by the change of the acceleration
vector during motion. The infinite series accounts for the liquid waves on the
surface. In the fluid force expression (2. 15) the first term represents the iner-
tial force of the liquid. In or close to resonance the liquid force can be a multi-
ple of the inertial force, therefore endangering the total sound suppressor system.
In the expression (2. 16) the first term of the liquid moment is identified as the
moment caused by the shift of the center of gravity for a planar free fluid sur-
face. In the velocity distribution v the first term represents the container motion.
Omission of this term yields the velocity distribution in the container.

As can be seen from the previous results, the liquid motion in the con-
tainer exhibits singularities at the resonances. However, since there is a
little damping in the system, (due to internal and wall friction), a damping
value should be introduced to limit the amplitudes at the resonances. This will
be performed with the help of a mechanical analogy, which also will provide a
simple method for the description of the liquid motion, and reduce the infinite
number of degrees of freedom of the liquid system to a finite number that is
pertinent for the dynamic behavior of the liquid.



SECTION 111. MECHANICAL ANALOGY OF LIQUID 3EHAVIOR

For the structural analysis a simple mechanical analogon for the de-
scription of the liquid motion is needed. This mechanical model, by comparison
with the liquid theory, will then present the amount of sloshing modal masses
and provide sufficient information of the number of liquid vibration modes that
must be considered in the structural analysis. In a vibrating container the
liquid oscillates in the close proximity of the free surface. Part of the liquid
in the lower part of the container follows the motion of the container like a rigid
body. To describe this motion with a simple mechanical analogy a spring-mass-
system is employed. The sloshing mass m of the nth vibration mode is con-

nected with two springs of stiffness I«:n/2 to the container walls y = o and y = a.
Its location from the center of gravity of the quiescent liquid is denoted by hn'

The non-vibrating liquid in the lower part of the container is represented by a
mass m of moment of inertia Io. This mass is attached rigidly to the container

at a height hO below the center of gravity of the undisturbed liquid.
Once the equations of the mechanical analogy are derived, they will be

compared with the fluid theory to obtain the mechanical values, such as m .
m kn, hn and h0 (Fig. 3).

A. Analytical Model for tire Description of tne Liquid Motion

The equations of motion of the mechanical analogy are derived with
the help of the Lagrange equations. If Y, is the displacement of the nth sloshing

mass mn with respect to the container wall y, the tank displacement in y-direc-
tion, and 4 the rotation about the z-axis, the kinetic energy is then
Ty . 1 1 v .
T==2 (y+h ) +‘ilo”“"nz_1mn<5’n+y+hn”>2 : (3.1)

The first two terms represent the kinetic energy of the mass m which is rigidly
connected with the container. The series describes the kinetic energy of the
modal masses m_. The potential energy is given by



I 1 2 ¥ 1 2
V=2gém b -7 g ). mh -gd ) myn+2z Kyl (3.2)

Here, the first term represents the potential energy caused by the lifting of the
mass m during rotation about the z-axis, while the second and third terms
describe the same fact for the modal masses. The last term is the energy that

is stored in the springs of stiffness kn.

To make the mechanical analogy equivalent to the fluid system, the sum
of the nonsloshing mass and the modal masses must be equal to the total liquid

mass

© p=t " - (3. 3)

Furthermore, for small oscillations, the center of gravity of the liquid shifts
in the first approximation horizontally only. Therefore,

mh = ) m b (3. 4)

must be satisfied. Because of this condition, the first two terms of the potential
energy cancel each other.

The equations of motion are now derived from the Lagrange equation

d 6T) oV
- + —_— = Q.
dt \(Sqi (5qi i (3.5)

where Qi are the generalized forces and are

Q =-F ; Q&=—M ;5 Q. =0 (3.6)

10



andy, 4 and y, are the generalized coordinates. The equations of motion are,
therefore,

o0
se + b + ve + 'Y} + L5 i
mo(y ho151 ) nZ=:1mn(yn y th ) Fy (3.7)
[- o] o]
ae + 2.- _ + e + L - _
1¥ +m b3 gnz=: 1 m b nz= 1 mh (§ +h $)=-M_ (3. 8)
Y] 2 - _ P _ .o . —
y, twy, =-Y hn19+gz9 ; n=1, 2,... (3.9)
kn
where w; = 1-1'1—- (see 2.8). The first equation is the force equation, the second
n

is the moment equation and the third represents the sloshing equations (n = 1,
2,...).

B. Solution of the Equations of the Model and Determination of the
Mechanical Analogy Values
Since a pitching motion (i.e., oscillation about the z-axis) of the

sound suppressor reservoir is unlikely, only the translatory excitation case is
treated. If 4 =0, the equations of motion yield

[~}
my +n211mnn=—Fy (3. 10)
o0

mn(hnirn -gy).=-M, (3.11)
n=1
yo+ely =-F ; (n=1,2,...) . (3. 12)
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i iQ2
From the sloshing equation with y = yoe1 ¢ and Y, = Yne1 t

Q?‘y

2
_ o) _ 0y
2 _Q? or Y. T2 _q?
noY noof (3. 13)

is obtained. Therefore,

e _ Qz e
Yn wfl-szz ] (3. 14)

With this, the force equation yields

8

_ . s “n Q2
Fy——my[1+z m (wfl-ﬂz)] . (3.15)

The moment is then

QZ
00 mn (g+hn )

M =_m.y' _; (wZ_QZ)
n

Z =1 (3. 16)

After this derivation and solution of the mechanical analogy, the mechan-
ical values have to be determined. This will be performed by comparing the
mechanical analogy with the results of the liquid theory (Section II). However,
the moment equation (2, 16) as obtained from the fluid theory is not compatible
with the moment equation of the mechanical analogy (3. 16) and has to be trans-

formed.
The other expressions are then compared. First, the spring-stiffness
th
kn has to be chosen such that its ratio with the n sloshing mass m represents
the square of the circular natural frequency:
kn T nrh
-4 - 2 =BT tanh(——) ; forn=1, 2,...
m n a

a
n

12




Comparison of the forces (2. 15) and (3. 15) yields ( Table 2)

(-7 ]
m2n—1 __S_tanh[ a h
=73

=1, 2,...
m 7 (2n-1)° (h/a) for n >
and
m
2n -0
m .
With
1 8 o 1
12(h/a) ~ w4 @_1 (2n-1)*(h/a)
the transformed moment reads
o (2n—1)1rh]
M =-my Y 88 . tanh{_ a g(en-1)7
- L 4 ‘o) (O 134 ¢, .2 _Ql
z 2y T (h/a) (2n-1) (w2n_1 ) a
20T oy (2n-1) 7
+Q {Za (2n-1) - 2 tanh[ on h ) (3. 18)

Comparison with the moment equation (2. 16) and that of the mechanical
analogy yields the relation for hn

_h 4a (2n-1)w
b, = 2{1 " Th(2n-1) 2nh [ h]}

<

(3.19)

The magnitude of the modal muzsses: nd their location depends only on
the geometry of the container.

Therefore, it will be expected that the influence

(3. 17)



of the liquid in the reservoir upon the structural behavior of the sound suppres-
sor system can be determined mainly by the geometry of the reservoir.

SECTION IV. STRUCTURAL ANALYSIS

For the proper design of the system, the knowledge of the interaction of
the structure of the sound suppressor system and the liquid in the reservoir is
of great importance. This is particularly true since more than eighty percent
(four million gallons) of the liquid sloshes in the container. In the analysis the
liquid in the container is described by the mechanical analogy (see Section III).
Since the occurrence of longitudinal (in x-direction), pitching, yawing and roll
motions of the container is very remote, analysis is restricted to the tranlation-
al degrees of freedom in y and z direction. These, however, can be assumed as
uncoupled. Thus, a two degree of freedom system is obtained if all higher
sloshing masses are neglected and only the fundamental sloshing mode is re-
tained. This is justified since the second sloshing mass is only 8. 6 percent of
the total liquid mass. Since the mass of the support structure exhibits a rather
large portion of the total mass of the system, it cannot be neglected. The amount
of 17/35 of the support structure is added to the mass of the container structure
rnC and the nonsloshing mass m because the support structure represents
cantilever beams. The container is carried by v pairs of cantilever beams on
either of the long sides in the shown orientation (Fig. 4) and by u pairs of
cantilever beams at the small sides of the container (z-direction). The stiff-
ness of these beams are EIy in y-direction and EIZ in z-direction. The beams

are supposed to be identical except for the orientation, which is exhibited in
Figure 4. The value E is Young's modulus of elasticity, I is the geometric
moment of inertia of the cross section and £ is the length of the beams. The
sloshing mass of the nth liquid mode is attached with springs of stiffness kyn/2

and kzn/2 to the container walls at a height hn. The distance from the grade is
denoted by Ln' The mass M composed of the container mass mc, nonsloshing

mass m and 17/35 of the support structure, i.e.,
M=m +m +17/35m
c 0 ss

is located at a distance JZO from the grade. Its displacement in y-direction is

denoted by vy and in z-direction by Zy- The nth slosh mass performs a

14



displacement relative to the reservoir wall and is denoted by Yoo for motion in
the y-direction and by zn2 for motion in the z-direction. If, as in the numerical

evaluation, only the fundamental slosh mass is considered, its displacement
relative to the container wall is denoted by Y, for the y-direction and by z, for
the z-direction.

A. Equations of Motion

Since the fluid mass that participates in the motion of the free fluid
surface (i.e., the sloshing mass) decreases as 1/(2n- 1)3, only one sloshing

mass m1 = m, attached at a location L, =4 + ho + h1 from the lower end of the

beam, is considered (see Fig. 4). The sum of the mass of the container struc-
ture, the mass of the non-sloshing liquid and the effective mass of the support
structure is denoted by M. The generalized coordinates are y 1 and Yo where

Yy is the displacement of the mass M at the location £ and Yo is the displacement

of the sloshing mass m at the location L. For the derivation of the equations of
motion the displacement influence coefficient method is employed. For this
reason the displacement of the beam at the location x caused by a force F at the
location ¢ has to be determined. The moment at the location x caused by a force
at the location ¢ is given by

M=EIy"=F{s-x) forx<¢

In agsuming a uniform beam (i.e., constant stiffness EI), the displace~
ment can easily be obtained by integration of

y"=§i(§—x) for x < ¢

with the boundary conditions of zero slope and zero displacement at x = o in the
case x < ¢, This yields a slope (x < £)

y'(x) =2—gi [ng - xz]

and a displacement for x < ¢

15



y(x) =g%[3 £x? - x3]

For x > ¢ the displacement is
y(x) =y(£) +y'(£) (x- &)

which yields (x > &)
y(x) =g% 3ext - x>+ (x - £)3}

The influence coefficients dij are determined next. Applying a unit force

at the location (1) yields at this location with x = £ = £ a deflection

£3

Su=3pr . (4. 1)

The deflection of the mass m (i.e., at the location [2]) is then with x = L and
£ =1

1
Op = SEI

341% - L3+ (L - 1)3}

which yields

PSR Ly %
612_621_6EI {3<1)- 1} . (4:.2)

A unit force applied at the location (2), i.e., at the mass point m, yields
a deflection of that point by

5o = kL? + 3EI
22 3kEI (4, 3)

16



This is obtained from the fact that the springs with stiffness k and 3EI/{ 3 are in
series, which means that their influence numbers add. The equations of motion
for the total system are now derived.

A unit force applied in y-direction at the location (1), i.e., the location
of the mass M, yields at that location (1) a deflection 51y1y in y-direction and
i
a deflection 6‘y z in z-direction. At the location (2), i.e., the location of the
141

sloshing mass, the displacement is 61y1y in y-direction and 6’-y 2 in z-direction.
2 142

A unit force applied in z-direction at the location (1) yields the deflections

04 in y-direction and 64 in z-direction at the location (1), and 6, in
Z1y1 2124 212
y-direction and 61Z . in z-direction at the location (2). Similar results for the
142

deflections are obtained by applying a unit force at the location (2) first in y

and then in z-direction. Therefore, 62y v is the deflection in y-direction at the
251

location (1) caused by a unit force in y-direction, applied at the location (2).

62y ” is the deflection in z-direction at the location (1) caused by that unit force,

241

0, is the displacement in y-direction at the location (2) and &, is the de-
Y22 YaZ2

flection in z-direction at the location (2) caused by a unit force in y-direction at

the location (2). A unit force in z-direction at the location (2) yields a deflec-
tion 6, in y-direction and 6, in z-direction at the location (1) and &,
22¥1 ZyZy Z2Y2

in y~-direction and 62z Z in z-direction at the location (2). The static problem
2Z3
is therefore solved if the influence coefficients 6, and 6, (i, j, k=1, 2)
1zjyk iy, Z,
are known. The deflections caused by the forces f‘; =Y1T + ZIE’ at the location

(1) and i:z =Y2_j'*+ZZ_k> at the location (2) are, therefore:

y1=06 Y{+6 Zq+ 6 Y, + 6 Z
1 13/1)71 1 lz 1 1 23’2}’1 2 2 2

1y Z3Y14

zy=0 Y+ 6 Zi+ 6 Y, + 6 Z
1 13'121 1 1z121 ! 2}’2Z1 2 22221 2

17



=6 Y+ 6 Zi+ 6 Y, + & Z
¥y 1yiyz 1 1, . 1 2y2y2 2 ) 2

1y Z2Y2

Zo = 0 Y+ 46 Zy+ 6 Y, + 6 Z
2 13’1752 1 1z1z2 1 2YzZz 2 2Zzzz 2

Since the beams are all parallel they act like parallel springs, thus having a
spring stiffness of the sum of their stiffnesses.

Considered is one pair of beams of the system. If its geometric moment
of inertia for bending in y-direction is given by Iy and in z-direction by Iz’ the

stiffness in y-direction of 2 u pairs of beams on the short sides of the system
and 2 v pairs of beams on the long sides of the container is given by:

3EI 3EIZ 3EI 3EIZ
—731 2v+—3 20 . The stiffness in z-direction yields: —FX 2p+ —3 2

For free oscillations the forces acting on the system are

Yy = - My, , 74 = -MZ,
Yz = -mjfz N Z2 = -m.Z.z

and the equations of motion are given by

yi+ 61y1y1M37'1 + GizjylMEz'i +62y2y1m§/2 + ézzzylm'z'z = (4. 4)
zq + 6,y1z1M57'1 + 61Z1Z1M2'z'1 + ézyzzlmjr'z + Gzzzzim'z'z =0 (4. 5)
yo + 61y1y2M3r'1 + 61z1y2M'z‘1 + 62y2y2m5f2 + c‘szzzyzm’z'2 =0 (4. 6)
& 6)’122MSI.1 " 61Z1Z2M.Z.1 ’ 525/'2Z2mi;2 " 6222sz.z.2 =0 . (4.7)

18



Since the support beams are chosen to be I-beams, thus exhibiting sym-

metry, the influence coefficients 6y , 0 > Oy , O » 04 s O ,
Z1y1 13’1Z1 Z2¥1 1Yzzi Ziy2 Z2Y2
61y 27 and 62y 2 vanish. This means that a force in y-direction does not create
122 229

a deflection in z-direction. Mechanically this means that the coupling of the y
and z-direction is zero. The equations of motion, therefore, split up into two
pairs of equations and are

+ 6 My, + 6 my, =0
VT Uy g LT gy Y2
+ 6 My + 6 my, = 0
y2 iy i 2y2y2 Y2 (4. 8)

and

zZ4+ 6 MZ, + 6 mz, =0
1 lzlzl 1 2Z221 2

+ M + 6 s _
%1 61z1z2 1 2202, mzy =0 (4. 9)

The influence coefficients with (4. 1) through (4. 3) are given by

- s8]

6 = , © =
Ly vi 6E(VIy + 4l ) 2ya¥1 12E(va +ul)
13[:;(—%)-1] k I3+ 6E(vI_+ pl )
5 - L\ 5 . y_ "z
y.vs 12E(VIy +ul) Y2 6kyE(VIy +4L) (4. 10)

o -]

23 5 =— :
1 - ) -
2421 =GRy v+ uIy) , Z1Zy 12E(vIz uIy)
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l L l

3 a() _ 3 +

i I 3(z) ’ :kZL + 6E(VI ruIy)
17,7, 12E (v + ’"‘Iy) 2292, 6k E(vI + uIy)

T (4.11)

As can be seen from the previous equations, the two pairs of equations of
motion can be solved independently. Transformation of the displacement influ-
ence coefficient matrix

-
f o ofe-]
w1 Y 6VEI 120ET
(6] = =
3| o l‘. 3
£°13 7)) 1 k L°+ 6vEI
6 é ¥ y
Yivs Pyaye 12VEl 6k EI v
L _J L y y vy |
. .. . . . A+v VA
into the force influence coefficient matrix yields with kw\ = (-1) ——A where

A is the determinant of the displacement influence coefficients and A N the
subdeterminant to the term (Av), v

24EI v(k L% + 6EI v) -12vEI k £3]3 (—%)-1
y oy y vy
ki kyp

L

(K]
Koq Koo

-12vET k 43 3%) -1:] 2403VEI k
i vy \ vy

It is L
A=403%k L3+ 6vEI ) ~ £5 3(—)— .
y y y[ \4
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The equations of motion in y-direction, therefore, can also be written as
My + kyiyq1 + Kyyp = 0
myy + Kyqyy + kogya =0 .

These equations exhibit static coupling.

B. Analysis of the Interaction of Structure and Liquid in
the Reservoir

Since the equations of motion in y and z-direction are the same kind,
the solution of one set is sufficient. The final results can be modified by writing
just the value zi(i =1, 2) instead of Y and the expressions 6iz 2 instead of the

jk
influence coefficients 0,

1y i Y

1. Free Oscillations.

For the free oscillations the solution is
_ {Ai cos wt
1=
By sinwt
_ f Ay coswt
y2 =
B, sinwt
which yield the frequency equation
1-6;  Muw? -6
Y

1-6 Mw? i-6 mw
13713’2 2
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This yields with 1/w? =X? the expression

X4-X%}s M+ 6 m \+ mMJé 5 -6 ] =0
{5’13’1 23’23’2 1}’1)’1 2}’2}’2 1}’1}’2 23’23’1

The solution of this equation is

1 1 2
X2 ==ls, M+6, mAF=\/(6, M-ms ¥ AmMs, b6, )
1/2 2 {13’13’1 2ya¥a } 2 vy 2yoy2 Yyiys Zyeyi

(4. 12)
which gives the square of the natural circular frequencies
wi = 1/x¢ and wy? = 1/x%% .
The Amplitude ratios are
A ) mw - 1 A 0 mws? - 1
U Ty, 12 1 T' yyy 22 _ 1
A o Mw Ay A o} Mw .
21 by gy 1 1 22 by yy 2 A (4. 13)

These ratios are equal to the ratio of the displacements y;/y, at these frequen-
cies. With these functions

vii (t) = Ay cos wqt , Y (t) = Ay cos wyt

ya1 (t) = AA 44 cos wqt , Yo () = AAyy cos wat

are obtained, which are particular solutions with the integration constants Ayy
and Ay. A solution of the form

22



yi1 = By sin wt
¥y = By sin wt

yields the same frequency equation and mode shape numbers Ay and A;. The
complete solution, therefore, is given by
yi(t) = Ay cos wit + Byj sin wyt + Ay cos wet + Byy sin wyt

ya(t) = 7\1[A11 cos wiyt + Byy sin wit:l+ A;Z[Am cos wst + Byy sin wzt]

where Ay, Ay, Byy and Byy are four integration constants which can be deter-
mined by the initial conditions at t = 0. With

y1(0) =y1o > ¥1(0) = vy

y2(0) =yz0 s ¥2(0) = uy (4. 14)

the solution is

1072 = Y20 vz ~ 0
yi(t) s\————"—cos wit + | ——— ] sin wyt

Ay - Ay wi(Ap = Ay)
V20 = A Y10 o — Aqugg ) .
g - Af cos wyt + wg (2 - Ap) sin wyt (4. 15)

Aq
1 .
ya(t) = (Ag = Ap) [(YiMz - Y20) cos wqt + o5 (v1oAs = vyg) sin wit]

Az 1
e -A COS Wyt — - A1 sin wst
(A - Ap) I:(Yzo 1V 10) 2t o, (w20 = A1 1a0) 2

(4. 16)

Similar results are obtained for the free oscillation in z-direction.
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2. TForced Harmonic Excitation,

For a forced oscillation with an excitation function Foy sin Qt
z
acting at the container, i.e., at the location (1), the equations of motion are:

+6 My'y + & my, = 6 F  sin Qt
i 1)’1)’1 ! 2)’23’1 2 13’13’1 oy

+6 My + 6 my, = 6 F  sin Ot
V2T Oy T Py, Tty oy (4. 17)

Y2Y2

for forcing in y-direction, and for a forcing function in z-direction at the loca-
tion (1) it is

Z4+ 6 MZ; + 6 mz, =6 F sin Ot
1 izizl 1 2Z221 2 1

7474 OZ

+ MZ + Zy = 6 in
Zy 61Z1Z2 zZy 62Z2Z2mZ2 1Z1Z2FOZSIH t (4. 18)

The steady state solution of the system (4. 17) yields the response amplitudes

61 [1 - széz ] + 61 62 mQZ
Y, F Yo¥>" —yays "yave
oy mMoéd o) (2¢ - w (2 - w
Y Y1 tyaye ) 2') (4.19)
0y
Y;=F Y2 P RPN
oy mMoé 0 (Q°-w (Q° - w
Y Y1 tyaye ) 2) (4. 20)

Similar results are obtained for the system (4. 18) by just exchanging y. and Y,
with z; and Zi' ! !
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3. Wind Response. The response of the system due to some wind
loading is important for the proper design of the structure. For this reason,
the effect of an arbitrary forcing function F (t) and F (t) in y and z-direction
respectively is investigated.

The equations of motion for excitation in y-direction are given by

yp+ 6 My + 6 my, = 6 F _(t) (4.21
! iy v 2ya¥1 v2 Yoy )
ya + 6 My, + 6 mys = 6 F_(t) (4. 22
2 Yyiva 1 2yaya V7 Yy )

and for excitation in z-direction, the equations of motion are

4 M3, + s _ .
Zq 61Z1Z1 Z4q 6222Zim22 61Z121Fz(t) (4 23)

+ . e _
% 6121z2MZ1 62z2z2mzz~ 61z1z2Fz(t) . (4. 24)

These represent two linear inhomogeneous differential equations, of
which the transient solution shall be determined for an arbitrary excitation.
Since the system already might be in some kind of motion caused by the surge
wave or some disturbance created by the firing of the rocket engines before the
wind hits the system at a time t = to’ the free oscillations during the time inter-

val0 =t = to are also treated in order to present properly the initial conditions

at the time to.

a. Step function. For the derivation of an arbitrary time function
input, the case of a suddenly applied constant force has to be treated first. Since
the above systems of two differential equations are of the same form except for
the constant coefficients, the derivation of the response is restricted to one sys-
tem, Introducing for

o 5., and & =5
yyy 1 T yayy 2

25



the equations of motion that have to be treated for a forcing function (Fig. 5)

0 forOo0=t=t
o

F(t) =
F0 for t = to (4. 25)
are given by
y1+ 8Myy + 6pmyy = 64F(t) (4. 26)
Yo + 01pMyy + ymyy = 6pF (L) . (4.27)

For the time interval 0 = t = to, the system is not disturbed and exhibits zeros
on the righthand side. With the initial conditions at the time t = 0

yi(0) =y1o y1(0) = vy
and

y2(0) =¥y20 y2(0) = vy

the solution yields for the time interval 0 =t = tO:

i 1 ‘
ya ='(>\'2 — 7\1) GYmAZ - YZO) cos wlt + 0)—1 (V10>\.2 - VZO) sin wlt
1 .
+ (¥20 - Ajy10) cos wat +w_ (V99 - Agvyg) sin wgt} (4. 28)
2
-1 M ‘
Y27 (- 1) M(Y10h2 - Y20) c08 wit + Wy (viphy - Vo) sin wyt
+ 2 (ya0- A )coswt+A2-(v - AqVig)Sin w t
2 \Y20 Y10 27 20 1V10 . . (4. 29)

26




At the time t = to’ a constant force Fo(wind) is suddenly applied. The solution

of the above differential equations in this time interval (t = to) is

y1=Ayq1 cos wit + Byy sin wit + Ay cos wet + Byp sin wyt + 61F0

¥2 = A(Ayq cos wit + By sin wyt) + A(Agp cos wyt + Byy sin wyt)

+ 6
121’O

where Ay, Ay, Byy and Byy are integration constants and 61F0 and 612F0 are the

particular solutions connected with the inhomogeneous part of the differential
equations. The constants of integration can be determined by the new initial
conditions at t = to as obtained from the final values of displacement and velocity

in the first time interval. This means that at the time the wind disturbance ex-
cites the system, it had already some displacement and velocity from a previous
disturbance. The constants of integration finally are

(y10r2 = ¥20) F (015 - 6p)

Ay = - cos w1t
1 (Ay = Ay (Ag = Ap) ( ity)
Viphg = Vg Fo(‘517\2 - Ogp)
By = - sin w4t )
U7 wi(r = 2y (Ag = Ay) (sin o1k,
Y20 = A¥10 Fo(512 - A161)
Avo = _
27 (0 - Ay (g — A (c0S @ty
Voo = Ay F (045 - 2464)
Bypy=—""T"—""7-— ————— (sin wst
27 (Mg = Ay) (g — g (Sinwat)

and the solution of the system yields for t = to
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(Y10r2 = Y20 Vighy = V20 Y20 = MYio

=————*— ¢cos wit +t 7 sin wit + ———— cos wyt
N A~ M 1 wiAg = Ay) 1 A -y 2
Va9 = A1Vyp F (62 ~ 0p)
————————— et L] + —_ -
+ 07 (% = 23) sin wyt 61Fo Wy cos wy(t to)
F (845 - As04)
= cos wy(t-1t)
Ay - Ay 2" % (4. 30)
M(yi00 = 20 A1 Vighy = Vao)
= + O
Y2 Y cos wjt w1(h - Ap) sin wyt
Ao (y20 = A1y 10) M (vag = AqVy0)
_— + ' + 64 F
+ A - Aq cos wat w7 (% - Ap) sin wyt oF
>\1FO(61}\,2 - 612) }\2F0(612 - 7\161)
- g~ 7q cos wy(t - to) - N cos wy(t - to) )

(4. 31)

It can be seen immediately that if the system was at rest att =0, i.e., yy =
yop = 0; Vvip= Vyp =0, the motion for t = t0 is given by expressions in the second

line of each formula. It represents oscillations with the circular frequency wq
and w, about the new equilibrium positions 61F0 for y4 and 612F0 for y;, indicating

that the structure as well as the free fluid surface oscillate about an inclined
position,

If the system is at rest until at a time t = 0 a wind step function of mag-
nitude Fo is applied to the container, the system responds with

(842 - Op) (01 ~ A16y) :
yi1= F0 01 - N - Ay cos wit - N - Ap CcOs Wyt (4. 32)
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A(642q - 6p) A2(Op = A104)
S (I Vs Vi R VS VS A OO )

b. Rectangular pulse. With these results a rectangular pulse of
magnitude Fo can be obtained by subtracting the response of a step function ap-

plied at t = t; and of magnitude Fo. It is, therefore, the response of the system
due to a rectangular pulse of magnitude FO and duration t; seconds given by the

equation (4. 32) and (4. 33) for 0 = t = t; and for t = t; by

017z - Oy
yi= F0 ——— [cos wy(t - t1) - cos wit]

(Kg - Ai)
(812 = A464)
+m [cos wylt - t1) - cos wayt] (4. 34)

A1(84Ap - Opp)
v2=F_ A'(Az W) [cos wy (t - ty) - cos wyt]

A (835 ~ A10y4)
+ ————— lcos wy(t - t}) - cos wzt]} (4. 35)

Ay = Aq
Several elementary forcing functions shall be treated. First, the response
of the system to a simple exponential asymptotic step FO( 1- e—at) shall be
investigated. Then an exponentially decaying pulse of the form Foe"Bt will be
treated, where the latter one represents for appropriately large F0 very closely

the blast loading case.

c. The exponential asymptotic step. The equations of motion for
the system disturbed by an exponential asymptotic step of the form (Fig. 6)
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o ; foro=t=t
F(t) ={F_(1- et -t),

. >
; fort_.i:0 (4. 36)
are given by
o} ; foro=t=t¢
.. ~a(t-t) ©
y1+51MY1+ 612m37'2 = 61FO(1 - e [¢] )
; fortzto (4. 37)
o ; foroststo
. . -—a(t-t
¥ + 612My1 + 62my2 = 612F0(1 -e ( O))
; fortzto (4. 38)

The solution in the interval 0 = { = to is given by (4. 28) and (4. 29) if the initial
conditions at t = 0 are given by y1(0) =yyg, ¥2(0) =¥a0, y1(0) = vyg and y,(0) =

voee At the time t =1t the exponential asymptotic step commences. For t=1t
o o

the solution, therefore, is

vi = Ay cos wyt + Byy sin wit + Ayy cos wet + Byy sin wyt + 61F0

—a(t-1t)
Fo{5122 ma? - §4(1 + 62ma2)} e o

+ -
{1 + 6,Ma? + 6;ma? + mMa (6,6, - 5122)}

Vo = A1(Aq4 cos wyt + Byy sin wyt) + A ( Ay cos wgt + Byy cos wyt)

e—a(t - to)
* ok, [1 - {1 + 6;Ma’? + 6;ma’? + mMa (8,6, - 5122)}]
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where Ay, Byy, Ap and By, are integration constants and the last two terms in
each equation represent the particular solution of the system. The constants of
integration can be determined by the new initial conditions at the time t = to.

These initial conditions are the final values for the displacement and the velocity
in the first time interval. The constants of integration finally are

Y20 ~ A Y10 cos wzto
Ap = + F
27 - o (A -2y)

[649°ma? - 61(1 + ma?s,y) ]

01M4 7”{1 + 6;Ma? + 6;me? + Mma?(8,6, - 5122)}

F sin wget
IO I R 1 N, _o 0
2 (1 + (SiMOlZ + ézma4( 5162 - 6122))Jf ()\.2 - A.i) (€30

[6122qu2 - 61(1 + mazdz)]

M zi' + 6,Ma? + s;ma?® + Mma¥(6,6, - 6122)}

—_ - [P ', A 1
+ 612|: 1+ 6;Ma? + d,ma® + Mma (646, - 6122)>]

Ugg = A4V F sin wst
20 1°10 o A

= +7
w2 (g = Ag) (A2 = Ay)

By,

[655°ma? - 64(1 +ma?s,) ]

(Ot M{’i + 6yMa? + &yma’ + Mma®(816, - 63
I 1 | -Foa cos w2t0
e {1 + 61Ma2 + 62mcx2 + Mma4( 6162 - 6122)} (7L2 - >\1)

[6552ma? - 6;(1 + ma?6,)]

. A T T " s B
1 {1 + 6+Ma? + S;ma?® + Mma4(6162 - 6122)}

1
+ .1
Ot [{1 + 6 Ma? + 6yma® + Mma*(6,6, - 6122)>]
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Ay =

By =

32

Viohz = Y20 Fo cos wlto
M2-X) M-y

82ma? = 64(1 + 8;ma?)

« (O F M{i +8;Ma? + s,ma? + Mma4(6,06, - 5122)}

F osin wit
0 o

i
- Opp [:1 - {1 + 6;Ma? + 6;ma? + Mma4(6;6, - 6122)£l T wi(dg - Ay)

8p?ma? - 83(1 + ma?s,)

"\ {1 + 6;Ma? + §;ma? + Mma(646, - 5122)}

1
*On 71y 5,Ma? + 6;ma? + Mma (6,6, - 5122)}

(vipA = Vo) Fosm wito

wildg = Ag) (Mg - Ay

51221’110!2 - 51(1 + 62 ma2)

" (1 +61Ma® + 6;ma’ + Mma(815; - 61"))

* { Oarp

F o cos wit
0 O

1
- Op [1 - {1 + 6;Ma? + 6;ma? + Mnat(8:6, - 5122?] wi(Az = A1)

61*ma? - 8;(1 + ma?s,)
) {M {1 + 6;Mo? + ;ma? + Mma4(8;6, - d1° )>

01
+ {1 + 61Ma2 -+ 62111(12 + Mma4(6162 = 6122)} }



and the solution of the system yields for t = t0 the expressions:

(¥10r2 = ¥20) (Vighs ~ Va9) (y20 = A1y10)

=—" < — cCcos t+—‘——s'nwt+———coswt
1= (6 - Ap) Ot i~ Ay ST (g -y 2

(vaq = A1vig)

+————— si + &4F
wa( Ay - A7) sin wyt 1F
FO{Gﬂzmaz - 64(1 + 6211[10122)}(3""(t - 1) F_cos wy(t-t)
* {I + 6;Ma? + 8;ma? + mMa (646, - 6122)} T (M- Ay
dp?ma? - 84(1 + 8,ma?)
02 e (1 +6Ma® + byma + mMa¥ (68, - 637} 612[1

1

Foa sin wy(t - to)
- - - +
{1 + 61Ma2 + 62mcx2 + mMa4(61(‘52 - 6122)>] wi(AZ - }\1)

Sp’ma? - 84(1 + 8yma?)

}\2_{1 + 61MC¥2 7;_621110[2 + mMa“( 6152 - 6122)}

{ Fo cos wyl(t - to)

- - - C +
+0p {1+ 6Ma? + &;ma? + mMa¥(616; - 657)) (Mg - Ap)

5p2ma? -~ 84(1 + S;ma?)
. ‘.51_7\.1 + Ay {1._'_ Slﬁa2_4462maf+ mMa4( 6152 _ 5122)> - 612 1
) o 7'1~ _ i Foa sin wy(t - to)
1+ 6;Ma? + 6oma? + mMa (846, - 64°) wy(Ay = Ag)
1 2 102 2 1
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Yo =

6°ma’ - 64(1 + §;ma?)

"M {T+ 0Ma” + syma? + mMat(8:8, - 6p7))

1
* 0 {1 + 6;Ma? + 6;ma? + mMa (6,6, - 5122)>

(4. 39)

A(yi0he ~ Y20) A(Vipha - Vo)
cos wit + sin wqt
(Ag - Ap) 7 w0 - Ay 1
N (y20 = Ayi0) Ag(Vag = AgVyg)
+ cos wot + sin wot + 6 F (1
(7\2 - 7\1) w2 w2(7\2 - >\1) 2 © o
e—oz(t - to) F07\1 cos wy(t - to)

- {1 + §;Ma? + 6,ma? + mMa (6.5, - 5122)} -

8ptma? - 64(1 + 8;ma?)

(A = Ay)

O + Ay

1

{1 + 6;Ma? + S;ma? + mMa (845, - 6122)>' 612[1

Fokia sin wq(t - to)

- +
{1 + 6;Ma? + dma? + mMa¥(646, - 5122)}

Sptma? - 64(1+ S;ma?)

Az {1 + (SIM(IZ + 621110[2 + mMa4( 6162 - 6122)}

1

wilAg - Aq)

FOM cos wy(t ~ to)

+
* 612 {1 + 61MC¥2 + 6211'1012 + mMa4(6162 - 6122)>

(A - Ap)



8p’ma? - 64(1 + 6yma?)
61%1 * Al {1 + 61MC\!A2 + szaz + mMa4( 6162 - 6122)} - GIZE

Foxza sin wy(t - to)

_ 1 -
- {1 + 61Ma2 + 62ma2 + mMa4(6162 - 6122)>] walAg = Ay)
bp'ma? - §;(1 + 6;ma?)
) 7"1 {1 +J61Mav2 + 62ma2 + mMOl4(6162 - 6122)}

1
+ 6 —_— e - - ~ . e
© {1 + 6;Ma? + 6;ma? + mMat(6:6, - 5122)}} . (4. 40)

For a = 0 the differential equations exhibit no excitation and the solution is that
of the free oscillation. For small values « the forcing function approaches the
value F0 very slowly, while with an increase in magnitude of the excitation func-

tion it approaches more and more the step function. For & — <« the previous
results should, therefore, exhibit in the limit the results of the excitation of the
system with a step function.

It can be seen immediately that if the system was at rest at t = 0, the
motion for t = t0 is given by the expressions (4. 39) and (4. 40) if the first line

is omitted.

d. Exponentially decaying pulse. The equations of motion for the
system disturbed by a wind which is described by an exponentially decaying pulse
starting at the time t = t0 with an amplitude F0 (see Fig, 6) are given by

o if O0=t=t¢t
(o]

. yi+ 6Myy + bppmy; =

6;F e~B(t—to) if t>t
o o
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yo + 61pM¥y + 6ymyy =

-p(t-t)
612F0e (o] ° ] (4. 42)

The solution in the time interval 0 =t = to is given by (4. 28) and (4. 29) if the
initial conditions at t = 0 are given by y4(0) = y49, ¥2(0) = yag, ¥1(0) = v44 and

y2(0) = v30. The solution of the system yields for t = to the expressions

Yiore - Yzo\ Viehs - Vao Y20 = AY10
yi=|—7T——(/—jcoswit + |- |sinwyt +| 7] cos wst

Ay - Ap / wilAy = Ay) A - Aq
Va0 ~ A V1o ) FO{61(1 + 6,mp?) - 5122mﬁ2}e_’8(t -t )
+ m Sin OJgt +((1 T (511'1’132)(1 + 62mB2) _ mMﬁ46122}

F cos wy(t-t) { 81°mp% - 6, (1 + 6y8%)
(o] (0] A

TN 2{(1 + 6mp?) (1 + 6,mp?) - mMBYo? )
5 { FOB sin wy(t ~ to)
T on ((1+0mp%) (1 + &;mp?) - mMB%p™) [~ wi(dg - A

52mp? - 64(1 + 8;mp?)
e {E+ mB?) (1 + ;mB”) - mMBY? )

1 FO cos wy(t - to)

+ 6y {( 1 + 6,mp?) (1 + &,mp?) - mMB46122} B (A = Ay9)

dp"mp? - 61(1 + mB*5,)
{7‘1 {( 1+ 6;mB?) (1 + 6,mp?) - mMpB* 5122}
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Yo =

. F Bsin wy(t -t )
+ 0y 2 2 Tt °
{(1 + 6,mpB%) (1 + 6,mB?) - mMB4,, } wy(Ag = Ay)

8p*mp* - 6;(1 + mB*6,)
- {2y {( 1+ 6;mp% (1 + 6,mp?) - mMB46122}

1
+Op {( 1+ 6;mp?) (1 + 6,mpB?) - mMB46122> (4. 43)

A(y10he = y20) Aq(VigAg = Vaq) Ao (y20- A1y 10)
t+ in wqt +
(% - 2p) cos wy W) sin wy (% = )

cos wqt

A (Va9 ~ AqVy0) Foéize—ﬁ(t B to)

+ w2(>\,2 N )\1) sin 0)21: +{(1 + MBz(Si) (1+ mBZ(Sz) _ mMB46122}

Sp*mp? - 64(1 + 6;mp?)
Az ((1+ MB%y) (1 + mp%6;) - mMB”Y

+

{ Foxicos wy(t - to)
* Op {¢ 1+ MB26;) (1 + mB26;) - mMB454,° }}{ (A - Aq)

F ABsin wy(t-t ) 6422mp? - 64(1 + 8,mpB?)
wilAg = Ay) 1{( 1 + MB26,) (1 + mpB25,) - mMB46122>

1
02 (1 + MB2%;) (1 + mp%;) - mMBoy"y

(4. 44)

{ F97\2 cos wy(t - to) ) Foﬁxz sin wy(t - to)}
(A - 2q) wa(Ag = Ag)
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For B = 0 this yields the response of the system due to a step function at
t= to. For increasing B the excitation function approaches the value zero more

rapidly. If the system was at rest at t = 0 the motion is described by the above
expressions by omitting the first line.

e. Arbitrary wind build-up. The results of these investigations
can now be used to describe an arbitrary, suddenly applied case of excitation.
If at a time t = to a force F(t) is suddenly applied, the response of the system

can be found by the superbosition of all effects due to an infinitesimal change in
the force (cross-hatched area in Fig. 7). The response of the system due to
this part is the same as that of a step function suddenly applied at t = 7 and of the

magnitude %F’; dr = F'(7)d7. By integration, the effect of the total change in F(t)

from t = to on is obtained., In addition, the constant part due to F(to) must be

auperimpose&. The problem that has to be solved now is given by the system of
differential equations

(o} ifo=t= to
y1 +.6iMyy + 6pmy, =
6iF(t) ift>t (4. 45)
o if 0=t=t
o
¥+ 6pMyy + Symy, =
SiF(L)  if >t . (4. 46)

The solution of this system in the time interval 0 = { = to is the same as
that obtained previously (4.28) and (4.29)., Fort > to the solution is composed
of the various effects of the strips F'(7)dr in addition to that of the constant force
F(to). The response due to F'(7)dr is given by

(61).2 - 612) (612 - 7\161)
dyy = F'(1)§ 64 - m cos wy(t- 1) - —(3\2-_?»1)—008 we(t ~ 7)(dT
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A(B5Ag = Op2) 2 (8 - 7464)
dyz = F'(T) 512 - —(ﬁi—)_ CcOoSs wi(t -T) - —(7\2:71)——

*cos wy(t -~ 'r)}d'r

Superimposing the response of the step function of magnitude F(to) with
the integrated parts of the force F(t) above F(to) yields the total response

(y10r2 = ¥20) (Vighz = Vao)

(¥20 - My10)
W cos wit +
- A

= ——————sinwit + 7T cos wyt
1 wi(Ay = Aq) ! (A2 = Ay) 2

(Va9 = Aqvyg) (842g - Op)

+ m sin wqt + F(to) {61 - W cos wy(t - to)

(049 — A404) t (640 - Op2)
g et [0y g ees wite= )
(o)
(612 = A169)

- —“_——(7\2 W cos wylt - '*r)} F'(7)dr (4. 47)

and

A(y10r2 - Y20 A1(Vighg — Vao)
cos wiyt + i t
()\2 _ }\1) 0S Wiy w1(7~2 — )\1) Siln w1

Y =

A2 (y20 - Ai¥10) Ay (Va0 = A1Vi0)
+ (A = Ay) cos wot + w3 Ay = Ay) sin wsyt
7&1(617\2 - 612) Az(ﬁm— 61}.1)
+ F(t Op~—T—> v -
( 0) 2~ ", < Ap cos wy(t to)

-—(7\2—‘7\—1)— cos wy(t- to)
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A1(04Ay - 612)

+ft O - cos wy(t - 7)
i (A = Ay)
)
Ap(04p - A404)
——(Wcos wy(t ~ 'r)} F'Y(1)dTr (4. 48)

Integrating by parts yields then

(y10r2 - Y20) (Vigra = V30) (¥20 = Ay10)

=————"—— CcoSs t+—/—————sinwgt+————————— t
27 (g - 0y CET gy - ag) TR CET (- ny OO% 2

(Va9 = A1V1) w1(01Ap - Ogp) t
+——————— si in wy
(P = A sin wqt + TYEEW) sin wqt tf F(7) cos wytdT

o
wy(652g - Oypp) t
- m——— cos wjt f F(71) sin wyrdT
to
wy (O - A164) t
+ (g = 2D sin wqt f F(7)cos wytdT
1:o
wy (62 = Ay61)
(A - Ap) cos wyt tft F(71)sin wytdT (4. 49)
0
and
A(y10he = ¥20) A(Vigdg = Vpp)
= co t + i t
yZ (AZ _ }\1) S wi w1(7\2 _ Ai) sin (.()1
M (¥20 = Aiy10) A2 (Vo = AqVyp)
sin wlt

T e A CO8 Ot - a)
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wihi(O4Ap ~ Op2) t

+ (7g = ) sin wqt f F(7) cos wqymdT

[

0

wiA1( A - Opp) t
- (A - Ap) cos wit

F(7)sin wyrdT

o™ —

waha (B3 ~ A164) t
] sin wst
(Ay = A9) 2

+ F(T)cos wyrdT

H‘"\3

o
‘-‘)2}\2(512 - 7\161)
T (- Ny)

t
cos wst f F(7)sin wymdT (4. 50)
i .

o

If the system was at rest at the time t = 0 the response for t = t0 is given

by the above formulae by omitting the first four terms in each equation.
SECTION V. DAMPED VIBRATIONS OF THE SYSTEM

Especially in the harmonically forced vibration case the displacements of
the sound suppressor can be rather large around the natural frequencies of the
system. Since the undamped case exhibits singularities at the natural frequencies,
damping must be included to find the maximum amplitudes.

A. Introduction of Damping

The results of the previously derived potential theory of fluid oscil-
lations are only valid and applicable if the exciting frequency is not too close to
the resonances and if the excitation amplitude is not too large. The latter con-
dition can be assumed to be satisfied; thus, linearized theory is justified. In
the vicinity of the resonances, however, fluid forces occur which are a multiple
of the inertial force of the liquid. These areas, of course, represent the impor-
tant frequency range in which the motion of the liquid will have its most pronounced
effect upon the structure of the sound suppressor system. The-introduction of a
damping factor is, therefore, of importance for the determination of the liquid
forces in these frequency ranges. It is introduced as a linear viscous damping
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of which the damping factor is determined by experiments, This actually repre-
sents an equivalent linear damping, which, in the case of the sound suppressor
system, is of very small magnitude (gn =0.001 to 0.01).

To account for damping in the liquid a dissipation function

1

18

1
D‘2

I

n

has to be introduced in the description of the liquid motion by the analytical model.
This yields an additional term in the sloshing equations (3.9) which with

¢ =2 w m
n nnn
now reads
v o+ 2 P+ wly =~y 5.1
Yn gnwnyn “n¥n Y ( )
and yields a liquid force

[+ o]
. n___ o
Fo=my 1+Z m (w?-9Q%+2if w Q) (5.2)
n n n

and a moment of the fluid

m (g+h 92)
n n S
m (w?-Q%+2if w Q) . (5.3)
n nn

After introduction of the linear damping terms into the mechanical model, the
values for the damped liquid force and moment can be obtained by merely intro-
ducing in the resonance terms instead of (wn2 - Qz) the expression (wn2 - Q%+

Zignwnﬂ) . The structural damping can be introduced as a linear viscous damping

and is represented as a dashpot with a damping coefficient css at the location of
the mass M.
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Therefore, the equations of motion (4. 8) are with damping, in y-direc-
tion

(y) (v}
+6 (My;+c y4) + 6 (my, ¢ ¥,) =0 (=6 F sin Qt)
Y1 1}’13’1 Y1 Ssyi 2y2y1 Y2 SsYz 1y1y1 oy

(5. 4)

(y) (y
+ 6 (Myy +c yq) +6 (my, +c v,) =0 (=6 F sin Qt)
V2 5, Vi SSy1) - Va2 SSYz) Ly 5," oy

(5.5)

and similarly, in z-direction

(2) (z)
+ . s\ 4 ey s _ R
Z4 612121(Mz1 + Csszi) 622221(Mzz csszz) 0 (=64 F S0 t)

Z{Z4 O
(5.6)
+ 6 (MZ, + (z), + 6 (MZ, + (2), y=0 (=6 F in Qt)
227" 0y g, A Cos21) 2pzy 2 g T Tz, 02 .
(5.7)

For the free oscillation problem the right hand sides of these equations are zero,
while for the forced vibration problem (excitation again acting at the container)
the right hand sides of these differential equations are represented by the ex-
pressions in the parentheses.

The damping coefficient Cog of the structural damping is given by

3EI
= M =M =
css gss u)ss gss M3

which in y-direction is

- IGVEI
c(y)=g M —
W3

ss ss (5.8)
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and in z-direction is
(z) 6uET
c =g M z
ss ss Me3 (5.9)

The value 8. is the structural damping and probably has a value in the range

0.005=<g = 0,02
SsSs

The damping coefficient cg of the sloshing liquid is given by
=2
s mwsgs
which in y-direction is

=2
Cs m(’"sygs (5.10)

and in z-direction is
Cs = zmwszgs (5.11)

B. Damped Sinusoidal Response

To obtain the steady-state solution for the damped system caused by
some harmonic excitation, complex solution methods are employed. With
6 =04, 6 = 049 and Oy = 6y, the two simultaneous differential equations
Y1 Viva Yoy

(5.4) and (5. 5) can be written in the form

(y) (y) ot

[ x] (X4 7 Y !
+ + tyi=
aMOy + Jymop + 0sc  Fi+ 0pe Yo +yy = O4F e (5. 12)
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() ) i0t

FiMby, + §pmé, + Spe V1 + Gye Y2 + ¥ = OpF oy° (5. 13)

The steady-state solution of this system is

= i0t
yi=Ye

— i0
Y2 = Yze1 t

which inserted in the above equations yields two complex algebraic equations for
the complex amplitudes Y; and Y,:

(y) (y)
Y (1 - M6Q?) + 0¥ 61c  + 10,650 - mé %Y, = 61Foy

(y) (y)
T.iQ - Q%, + Y, (1 - Q%) +iQY,6,c = 64 F
Y 612088 M612 Y, Yz(i m62 ) 1 92 zcs 12 oy

which yields

(y) (y) ,
GiFg(i—m(SzQz te 6Q) - 612F0y(61208 iQ - @§129 )

Yi=— -
1 (y) (y) (¥) (y)
(1-Mo0Q2 +m«51css) (1-mo,Q2 +iQbse )= ( Ope iQ-méb Q%) 612cssiQ-M61292)

, (y) (y) ,
- i - iQ - Mé,92
612F0y( 1 M(Sig -+ IQG;CSS ) élFOy(l GHCSS s 12 )

A Y
2 () (y) (y) (y)
( 1-M6192 +iQGicSS )( 1-m6292 +iQ(Szcs )—( 61205 1Q—m61292)( 6ichSiQ—M61292)
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Since the amplitude of the structure and liquid rather than the phase relation is
of interest, only the absolute value of the amplitudes is investigated:

LR Py ey

F | Val+p? (5. 14)

Foy Va? + b? (5. 15)

where

\ (y) [BEI av (y) (y) .
a=1- Q% Ms; +mé, + ZmeS'J—LW3 g L, [0101- 6y ]

+ mMQ? (6162 - 6212)

(y)TIGEI v (y)(y) 2[ (y) [6E_1 av
b=2 51MgSS W3' + 262mwsli,s - mMélﬁzgSS W—L3

(y) (y) (y)4[6EL av (y) (y)
+ 26162mes ~§s - Oyt (mMgss _I\EI%_ + 2mes C.S jl

¢ = 64(1 - m&,02%) + méy,Ql

(y) (y)
d=2mlw_ L (80 - 615%)

A parameter a has been included to show the effect of stiffness variation,
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C. Damped Liquid Oscillations

The introduction of linear damping into the results of the liquid anal-
ysis (Section II) requires in the resonance terms the value (1 - nrf + Zignnn)

instead of (1 - 77121 ). Some of the expressions in Section II, however, cannot be
used in their present form. A transformation with
(2n-1) jl
42 COS[ a
e (2n - 1)2
n=1

a_
2

yields a free fluid surface elevation

©  cos [L?,n—_i) WX]
- 4292 a

X(y 1) y ety |
3 2 2 - : 2 — 2
mg Ton 'y ymir2it, i 41 (2n-D)F

(5.16)

The pressure distributions can be kept in their original form by replacing
into them the expression (1 - 77n2 + Zignnn) instead of (1 - nnz). The damped

liquid force is
(2n-1) ﬂ?] 5
tanh[——“__a T’2n— 1

Fy = szyoeIQt 1+ % Z‘, - - h -
— 3y 2 ;
n=1 (2n-1)" 77 (1 Ton-1 * 21Z"Zn—i”Zn-—i) .

(5. 17)

The moment with

1 _8 i _ 4
- 4
12% T n=1 (2)(2n-1)4

is

47



_ (Zn—it ) 4 9 __2_
(2n-1) tanh( a wh | + b on- D) mhl’2a-1 ~ h
4ma it o i a cosh a ﬂ';
M, = T3 e L (2n-1)4 (17 S 1voit. )
n=1 ( 2n-1 * 2n—1n2n—1) )
(5. 18)

SECTION VI. NUMERICAL EVALUATION AND CONCLUS IONS

A. Liquid Motion and Mechanical Analogon

The natural frequencies of the liquid in the container are well de-
scribed by the formula (2, 9). They are indirectly proportional to the square
root of the length of the container. Table 1 exhibits the frequencies that come
into play during excitation in y-direction and z-direction if one chooses for the
length of the container a; = 250 feet and a, = 150 feet respectively. Since no roll
excitation is involved in the structural analysis only these frequencies are used.
Since the liquid height is rather small compared to the length and width of the
container the hyperbolic tangent function plays an important role.

The circular frequencies, of which thirty are presented in Table 1, ex-
hibit rather small values. In y-direction they range from wj = 0.22 to wgy = 3. 48
rad/sec and in z-direction from w; = 0, 43 to w 3= 4. 83 rad/sec. Of course, the
fundamental frequency w; = 0.22 rad/sec for hy/a; or w; = 0. 28 rad/sec for
hy/a4 and wy = 0. 43 rad/sec for hy/a; or wy = 0. 53 rad/sec for hy/a, play the
most important role since the largest sloshing mass is connected with those.

The values of the liquid height were chosen hy = 10 feet, h, = 12 feet and
hy = 16 feet. The sloshing liquid masses can be obtained from the mechanical
analogon and are represented in Table 2 for various liquid heights and container
excitation directions. The results show that the first sloshing mode is the most
dominant and that eighty percent of the liquid mass sloshes in the first vibration
mode. This is an extremely large value and requires special precautions. If
four million gallons of water will oscillate, the system will experience very large
forces and moments produced by the oscillating liquid. The sloshing mass of
the second mode is only about eight percent of the total liquid mass and only one-
tenth of that of the first mode, while the third sloshing mode exhibits only one to
three percent of the total liquid mass participating in an oscillation. These mag-
nitudes suggest, of course, that only the very large first sloshing mode has to
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be considered for a stability and response analysis. The water in the container
can, therefore, be described by a simple mechanical model consisting of a mass
point attached with springs at the tank wall, such that the ratio of spring stiffness
to sloshing mass k/m represents the square of the first circular natural frequen-~
cy w12 of the liquid in the container,

Before proceeding to the interaction of structure and liquid a few results
of the fluid response to translatory excitation of the container are presented.
The pressure distribution along the container bottom is given for various fluid
heights and forcing frequencies in y- and z-direction. Figures 8 through 11

1Y)
exhibit the pressure (pbo ttom pgh) /;:layoe1 t. The maximum pressure is

exhibited at left and right container walls and assumes for an excitation ampli-
tude of Y feet a value of about (55yo + 62. 4) lbs/ft?, which yields for an exci-

tation amplitude of Vo = 1 ft a value of 679 lbs/ft>. This happens if the forcing

frequency is € = 1, 1wy . For a larger fluid height of hy = 13 feet the maximum
pressure at the container bottom for one foot excitation amplitude is about

880 1bs/ft?. For excitation in z-direction where the container exhibits a length
of a; = 150 feet, the maximum pressure at the container bottom is 744 1bs/ft?
for a liquid height of hy = 10 feet and 960 lbs/ft? for a liquid height of hy = 13 feet
(Fig. 11). Again, these pressures are based on one-foot excitation amplitude
and a forcing frequency close to resonance, 2 = 1. lwy. The response of the
fluid force (lbs/ft) and liquid moment [ft - 1bs/ft] are exhibited in Figures 12
and 13, At resonance, of course, they exhibit singularities since no damping
has been included in the results of the theory. For a very small damping a peak
value of the force in y-direction of about 3. 63 X 10% 1bs is obtained in the first
resonance for a one-foot excitation amplitude, while the liquid moment exhibits
at this location a value of about 6 x 108 ft-1bs about the center of gravity of the
undisturbed liquid.

B. Interaction of Structure and Liquid

Here the free and forced oscillations have been treated. Further-
more, the response of the system to various wind pulses has been performed.

i, Free Oscillations. The knowledge of the coupled frequencies and
mode shapes is of fundamental interest. In addition, the effect of the change of
stiffness has been investigated and it was found that an increased stiffness would
not pay off. Table 3 exhibits the values for the coupled natural frequencies
wi;2 of the sound suppressor system for the orientation in the z-direction. The
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value ¢ is a stiffness parameter exhibiting for unity in its magnitude the nominal
stiffness and for o = 2 twice the stiffness of the support structure.

It was found that the natural frequencies in y-direction for a liquid height
of sixteen feet are extremely low (0.22 rad/sec) and that an increase in stiffness
does not particularly pay off. In z-direction, where the sound suppressor system
exhibits its largest area against a wind, the lowest natural frequency is presen-
ted in Table 3 and is very close to the uncoupled fundamental natural frequency
of the liquid. It is reached monotonically (w4 = 0.5319) with increasing stiffness
of the structure. The second coupled natural frequency exhibits larger values
(a little more than one cps for nominal stiffness of the support structure) and
shows that a doubling of the stiffness of the support structure increases this
frequency only by about forty percent. This frequency approaches with increas-
ing stiffness the value infinity.

2. Sinusoidally Forced Oscillations. Since a wind in the z-direction
is more likely to build up in a regular fashion and since the area obstructing the
wind perpendicular to the z-direction is the largest, this direction is chosen for
the numerical evaluation of the response of the system to a sinusoidal excitation
force. Although a pure sinusoidal wind of amplitude 13 m/sec is quite unlikely
for a longer time period, the results will reveal some interesting facts about the
influence of the damping of the structure and liquid. All wind data are based on
the American Standards Association (ASA) paper A58.1 - 1955, "American
Standard Building Code Requirements for Minimum Design Loads in Buildings
and other Structures,' and the American Society of Civil Engineers (ASCE)
paper No. 3269, "Wind Forces on Structures."

The response curves for which graphs have been omitted here show that
the response of structure as well as liquid is very small as long as the forcing
frequency € is not in the immediate neighborhood of one of the natural frequen-
cies wjy or wy. An increase in structural damping decreases the response around
the resonance peak of the structure considerably, but has hardly any noticeable
influence upon the magnitude of the liquid response., The same is true for a
change of liquid damping. An increase of the damping of the liquid will change
(decrease) the peak length of the liquid response in the immediate vicinity of the
natural frequency of the liquid, but does not effect the response of the structure.

The following values exhibit the effect of the change of liquid and struc-

tural damping upon the peak values for the deflection of the structure (z; max)
and the amplitude of the liquid (z, max) at the container wall.
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d

¢=0.001 £=0,01 £=10.02 £=0,05

lg=0.001 g=0.02 |g=0.001 g=0.02 | g=0. 001 g=0.02 [ g=0. 001 g=0. 02

zi max 50" 2‘ 5" . 49. 5" 2. 5" 49. 5" 2‘ 5” 49. 5” 2. 5"

Zy 9.6" 9,6" | 5.3 5" 3" 3" 1.25" 1,25"

Most likely the system will exhibit a liquid damping factor ¢ between ¢ = 0,01

and ¢ = 0,03 and a structural damping of at least g = 0. 02. A maximum displace-
ment of the container in the most unfavorable sinusoidal wind excitation case
would be of a magnitude of 2. 5 inches, while the liquid height would exhibit a
magnitude of about five inches.

3. Wind Response. The response of the sound suppressor system
has been numerically evaluated for various wind inputs in z-direction. An
average value for the wind pressure of 50 psf has been employed. Figures 14
through 37 exhibit the response of an exponentially decaying pulse for various
stiffness parameters o and various degrees of decay. The equivalent wind force

isF,  =11x 10% 1bs. It is assumed here that the system at the time t= 0

was at rest and that at this time a wind of equivalent force Fz

sound suppressor system,

o P

t hits the

For B = 0 the step function is obtained (i.e., a wind

force which at t = 0 suddenly assumes a value FZ and remains at this value).

The figures exhibit the displacement of the structure (z;/ F
the liquid amplitude (zy/2. 5F,

eq ) in ins/lbs and
eq ) in ins/lbs, where the factor 2. 5 stems from

the conversion of the displacement z, to the liquid amplitude at the container wall.
The main results are presented in Table 4.

It can be seen that for the case of excitation by a step function (8 =0),
the structure performs oscillations and exhibits a maximum displacement of
about 2. 76 inches for half the nominal stiffness (o =3). The liquid amplitude
for these cases of stiffness are 7.2 inches for half the nominal stiffness, 3.6
inches for nominal stiffness, 1.77 inches for twice the stiffness and 0.7 inches
for five times the structural stiffness of the support structure.
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For B = 0.1 a slight decay of wind is experienced. Here, the response
of structure and liquid can be seen for the various stiffness cases in Figures 22
through 29. The maximum structural amplitudes are 2.7 inches for half the
nominal stiffness of the support structure, 1.3 inches for nominal stiffness,
0. 66 inches for twice the stiffness and 0. 28 inches for five times the nominal
stiffness. The liquid exhibits a maximum amplitude of 5. 5 inches for « = %,
2, 8 inches for @ = 1, 1.4 inches for o = 2 and 0. 55 inches for a = 5,

Similar results are obtained for an exponentially decaying wind with
B =0.5. This wind already reaches half its initial value in about 1.6 seconds
in contrast to the case 8 = 0. 1 where it takes 7 seconds for the wind to exhibit
half its initial magnifude. The results of the response of the container and the
liquid are exhibited in Figures 30 through 37. The maximum amplitudes reached
for the structure are 2.3 inches for o = 4, 1.2 inches for o = 1, 0. 63 inches
for @ = 2 and 0, 23 inches for @ = 5, The maximum liquid amplitudes are 2.8
inches for o = , 1,4 inches for o = 1, 0.7 inches for a = 2 and 0. 28 inches
for « = 5. The values in the parenthesis behind the maximum values in the
table indicate the values which are assumed after the pulse has ceased to be
effective.

The response of the support structure and the liquid to a rectangular
pulse of t = 2, 4 and 10 seconds duration is exhibited in Figures 38 through 61
for various stiffness parameters (o = 1, 1, 2 and 5). A wind is suddenly applied
and ceases to act at a certain time ty. It may be noted that the pulse duration
and the natural frequency have an important influence upon the magnitude of the
vibration after the pulse has been completed. This can be seen from the follow-
ing investigation. The solution for the motion of the system after the pulse has
been completed is given by

23 = Aqlcos wy(t - ty) - cos wyt] + Aglcos wy(t - ty) - cos wst]
Zy = AAylcos wi(t - t1) - cos wit] + Aylcos wy(t - tg) - cos wyt]

where A, and A, are some given amplitudes. Combining the terms in the paren-
thesis to one trigonometric function yields

cos wi(t - t;) - cos wit = C sin (w4t - @)
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where

Wity wity
Csino =sinwity=2 sinT cos 5
w1ty

C cos @ = [1 - cos wjty] = 2 sin®

2

which gives the amplitude and phase relation

wity wqty
C=2 sin —5— and oz=-2—.
Therefore
wqty waty

zy = 2A4 |sin 2 sin (wit - wltl) + 2A, |sin > sin [wyt - &t_k)

2 2
wity waty

Zy = 2M4A, | sin ) sin (w it - w1t1)+ 2MA, | sin 5 sin (wzt - ﬂ_t_l)

— 2 .

2

From this it can be seen that the magnitude of the vibration after the pulse has
been completed depends on the value ! sin w 1t1 I and lsm wztl‘ If those values

happen to be small values the response will be small. The main results are
given in Table 4, while the more detailed response can be seen in Figures 38
through 61.

The response for a rectangular wind pulse of various durations
(t;j=2, 4, 10 sec.) for a = 1 is exhibited in Figures 38 through 43. The maxi-
mum amplitude of the container is 2,76 inches in all three pulse cases. After
the pulse has been completed the structure oscillates with about the same ampli-
tude in the case of pulse duration t; = 2 seconds, while it drastically has changed
its amplitude to a value of 0. 3 inches in the case of a pulse duration t; = 4
seconds. For a pulse duration of t; = 10 seconds the amplitude remains 2.76
inches. The liquid amplitudes for these cases are in the same sequence given
by 3.6 inches, 6.2 inches and 7.2 inches.
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After the pulse is completed the liquid amplitude remains about the same
for the cases of pulse duration t; = 2 and 4 seconds, while for t; = 10 seconds it
changes to the small value of 3. 5 inches., For nominal stiffness (& = 1) the
results can be seen in Figures 44 through 49. For a pulse duration of t; = 2
seconds the structure exhibits a maximum deflection of 1. 4 inches and assumes
the value of 0. 6 inches after the pulse has been completed. For four seconds
pulse duration the amplitude is 1.4 inches; the structure then shows also a value
of 1. 4 inches for the pulse duration of ten seconds, after which it performs
oscillations of maximum amplitude of 1. 2 inches. The liquid exhibits in the
first case of a pulse duration of 2 seconds the amplitude of 1.8 inches, while for
t1 = 4 seconds, it is 3. 1 inches and finally for a pulse duration of t; = 10 seconds
the amplitude of the liquid is 3. 6 inches during pulse duration and 1.7 inches
after the pulse has been completed,

For twice the nominal stiffness (o = 2) the structure exhibits in all three
pulse cases 0.7 inches, while after the pulse has been completed the amplitude
is 0. 01 inches for t; = 2 and 4 seconds and 0. 03 inches for t; = 10 seconds. The
liquid exhibits values of 0.9 inches throughout in the case t; = 2 seconds, 1.5
inches throughout in the case t; = 4 seconds, and 1. 8 inches during pulse dura-
tion of length t; = 10 seconds and 0. 8 inches after the pulse has been completed.
(See Figs. 50 through 55).

For five times the nominal stiffness (o = 5) the structure exhibits in
all three pulse cases the displacement 0.3 inches during the duration of the
pulse, while after the pulse has been completed an amplitude of 0.2 inches for
t; = 2 seconds, 0.3 inches for t; = 4 seconds and 0. 23 inches for t; = 10 seconds
exists. The liquid exhibits an amplitude of 0. 36 inches throughout for ty = 2
seconds, 0, 62 inches throughoutfor t; = 4 seconds, 0,72 inches during pulse
duration t; = 10 seconds, 0. 32 inches after the pulse has been completed
(Figs. 56 through 61).

Numerical Values

o5 1bs sec?

liquid mass m =0,865x1 -
inch

liquid weight W = 3,34 X 10’ lbs
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5.76 x 106 1bs

Il

weight of support structure w

ss
2
mass of support structure m_ = 1.5x 104 M
ss inch
weight of container Wc = 3,58 x 108 Ibs
2
mass of container m_ = 0,926 x 10% M
c inch
fluid heights: hy = 10 feet
h2 = 13 feet
h;y = 16 feet
container dimensions: a; = 250 feet
a; = 130 feet

pairs of support beams: v =16; u=18

Young's modulus of elasticity: E = 2.1 x 107 1bs/inch?

geometric moment of inertia of I = 17348 (inch)?

each pair of I-beams: I =1x 10¢ (inch)?

distance of the location of the
sloshing mass from ground level: £ = 90 feet = 1, 08 x 10° inches

distance of the nonsloshing mass: L = 91 feet = 1. 09 x 103 inches
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SECTION VIl. CONCLUSIONS AND RECOMMENDATIONS

According to the previously presented results it can be seen that because
eighty percent of the liquid (4 x 10 gallons) sloshes in the first vibration mode,
the problem of interaction of structure and liquid can be a quite serious one. In
y-direction the structure is a little weak and exhibits large deflections if excited
in resonance. A regular pattern for a wind input is unlikely because the tower
obstructs a clean build-up of winds; therefore, a slight stiffening is recommended.
In z-direction a stiffening does not pay off, since the design of the support struc-
ture seems adequate to withstand various wind pulses.

George C. Marshall Space Flight Center,
National Aeronautics and Space Administration,
Huntsville, Alabama, September 30, 1965,
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TABLE 1.

NATURAL CIRCULAR FREQUENCIES

natural circular frequency

Wy
wg

Wy

@Wiqp

wiq
Wiy

W3

W15

W 1g

W 17
Wig

Wy

W20
Way

Waa

Was

y~direction

hy/ay  hy/ay

hs/ay

hy/a,

z-direction

hy/a,

hy/a, fluid height ratio

0.4461 0.5051

' 0.2248 0.2258 0.2832

0. 4293

0.4683 0.5319

0. 5555

0. 8354

0.9305 1.0044

0. 6608 0.7422

0.8663 0.9634

0. 8087
1.0380

1. 2024
1. 5243

1.3104 1.3837

"1.6358 1.6851

1.0609 1.1666

1, 2425

1. 8028

1.8880 1,9306

1.2435 1.3515

1, 4236

2,0439

2.1104 2.1389

1.4136 1.5191
1.5716 1.6710
1.7180 1.8090

'1.8538 1.9353
1.9797 2.0515

1. 5842
1.7276
1. 8569
1.9748
2. 0835

2. 2548

2.3042 2,3223

2.4421

2,4774 2,4886

2.6111
2. 7660
2. 9098

2.6358 2.6425

2.7829 2.7869

'2.9213 2. 9236

2.0970 2.1592

2.1848

3.0450

3.0526 3.0539

2.2066 2.2598

Wiy 2.3094 2.3545 2. 3704

2.4062 2. 4441
2.4979 2.5295

2.2801

3.1730

3.1780 3.1788

2. 4565

3.2951

3.2984 3.2988

3. 4123

3.4144 3, 4147

2. 5390

3. 5251

3.5265 3.5267

2.5851 2.6113
2.6683 2.6899

2.6186

3. 6342

'3.6351 3.6352

2. 6955

3. 7400

3.7406 3.7406

2.7480 2. 7657

2. 7700

3. 8427

3.8431 3.8431

2.8247 2.8392

2, 8424

3. 9427

3.9429 3,9429

2.8987 2.9105

2.9703 2.9798

3.0379 3.0474

2.9129
2.9817]
3. 0488

4. 0402

4,0403 4,0403

4. 1353

4, 1354 4,1354

4. 2283 4.2283 4.2283
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TABLE I

( Concluded)

natural circular frequency

y-direction

h1/3.1

hp/ay  hy/ay

Way

3.1072

3.1135 3.1145

Was

3.1730

3.1780 3.1788

Wag

3. 2372

3.2412 3.2418

Wor

3.2999

3.3031 3.3036

hy/a,
4. 3192
4. 4083
4, 4956
4, 5813

Wag

3.3613

3.3639 3.3642

4. 6654

Wag

3.4214

3.4235 3.4238

W3g

3. 4805

4, 7479

3.4821 3.4823

Z

4.4084 4,4084
'4,4957 4, 4957

'4.5813 4.5813
'4.6654 4.6654

4.8291 4.8291 4,8291

-direction

hy/a;  hg/a, fluid height ratio
4.3193 4.3193 -

4.7479 4.7479
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TABLE II. SLOSH MASS RATIO

y-direction

2n-1/m

z~-direction

n | hy/ay hy/ay hs/ay hy/a, hy/ay  hg/ay

i 0. 806 0.803 0, 7998 0.795 0.785 0,772
2 0. 086 0.083 0. 081 0,077 0.070 0.064
3 0. 029 0. 027 0. 025 0.022 0.019 0.016

TABLE III. COUPLED NATURAL FREQUENCIES
(a = STIFFNESS PARAMETER)

(63 wlz O)zz

1 0. 528 4.76

1 0.53 6. 69

2 0. 53 9, 43
|

5 0. 53 14. 89
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Decaying Pulse:

TABLE IV, WIND RESPONSE

B zZ4 Zy Z4 Zy Z4 Zy Z4 Zp
0 2.76" 7.2" 1,4" 3. 6" 0.7" 1,77 0. 3" 0,7"
0.1]2,7" 5, 5" 1.3"(0.7') | 2.8"(1.2")| 0,66"(0.38") 1 1.4"(0.9™) . 0.28"(0. 14") | 0,55"(0, 36")
iO. 5 2.‘ 3"(1.3M | 2.8"(2.7M | 1,2"(0,7') _ 1, 4"(1.3") | 0.63"(0,34") 1 0.7'"(0,7") L‘ 6.23"(0, 14") | 0.28"(0, 27")_
Rectangular Pulse:
N [& 1 1 1 2 2 5 5

Z4 Zy Zq Zy Zy Zy Z4 Zg
2 12,76" 3. 6" 1,4"(0.6'")| 1,8" 0.7'"(0,01") | 0.9" 0. 3"(0,2") 0. 36"
74 2,78"(0, 3") | 6. 2" 1.4"(1M) 3. 1" . 0.7"(0,01") | 1,5" - 0. 3" EO. 62"
110 12, 76" 7.2"(3.5™") | 1.4"(1,2")} 3,6"(1,7") | 0.7'"(0.03") ‘ 1.8"(0.8™) 'ﬁ 0. 3"(0, 23") 0. 72"(0, 32") |
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FIGURE 1,

SCHEMATIC OF TANK SYSTEM, SATURN V SOUND
SUPPRESSOR



%9

FIGURE 2. TANK GEOMETRY AND COORDINATE SYSTEM
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FIGURE 3, MECHANICAL MODEL
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FIGURE 4. MECHANIGAL SYSTEM




FIGURE 5.

Stepfunction

STEP FUNCTION AND RECTANGULAR PULSE
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F Exponentially decaying pulse
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FIGURE 6. DISTURBING FUNCTIONS
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FIGURE 7. ARBITRARY WIND BUILD-UP

67



Poottom ~ 8

int
pearyee
" 16
fa o
IIH 4 [N T
0 i L T I O I
“ NN ] 11] T ¥ T
'y O s, I =110 B, >
3 L )] _ ’? l T 2 =9, 0521 L
- o I =0,04 . ey
/ : H
A g r ™ | -
Lryd L .08) 7] @ = 0,9 44
! L A
N A ol LT A
- ’ Q = 0,904y, Q =0, 5w,
4 T Id
-
ri 1 id h!
] b B X
i OTr H - f -
THA BN é_,_ f
. ] I HH A e L e y/a3
0 0 g ja 0 g o] 2 1] 1 n 2 ry
1 A T TITT] e 1
-0 { ] X
A R A . N /
AT _§~: 1T .
-] R (11
T Z(_ -
rrl L rd .
- 00 4 (17 B L[ a'dN
- a
/ i F
d [T L1 BNEVANEN v b
-4} 3 e
X
= ae AW
LE 11 Y, | -8
o] | 1
v L yug VO] e . I )

FIGURE 8. PRESSURE DISTRIBUTION AT CONTAINER BOTTOM FIGURE 9. PRESSURE DISTRIBUTION AT CONTAINER BOTTOM
FOR EXCITATION IN Y-DIRECTION FOR EXCITATION IN Y-DIRECTION

Phottom ~ B2
it
praeygee

" hl 11
‘\:\E‘S ik ” { [T1 HLL f" T
Q% Jﬁk.— ] M - ] ; ﬂ_o's“’l___ 1T 1
N1y + i Q =0, 9w, —
\ AR A4 /
R e / HIN h . AT i
] %t_'/ S A / L

BT Za A GRTRNCN

v

%
rdil \ /]
] Ny /]
o // 5@‘ ;"1
| 1 4 = \:.«”
i ! Hraali: |
H Pt N
SRl i T M|
[ SERER R 111 IBRES PR PRQRERE b | [‘“’1 !

FIGURE 11. PRESSURE DISTRIBUTION AT CONTAINER BOTTOM

FIGURE 10, PRESSURE DISTRIBUTION AT CONTAINER BOTTOM FOR
FOR EXCITATION IN Z-DIRECTION

EXCITATION IN Z-DIRECTION

68

TR i




¥/ palygel 2t
L Y
|
.3
.2 L
1] h |

-. 1 _ Iq
-. 2
-.3
-. 4 ,
! j
| | | *
_ 5 a = 3000,0 ~ h=192,0 “h/a 0,064

FIGURE 12. RESPONSE OF FLUID FORCE TO HARMONIC EXCITATION

69



iQt
Mz/pas.Vo? L
l -
—4 = 0,064
aj
1 - - i 1.
\ Q
0 r} _ \’\%&
|
a = 3000,0 h= 192,0 h/a = 0,064
-.1 1] 1 .t L . 1 &

FIGURE 13. RES®ONSE OF LIQUID MOMENT TO HARMONIC EXCITATION

70



Exponential Decay
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FIGURE 46. RESPONSE OF STRUCTURE TO RECTANGULAR
PULSE OF DURATION (a =1) t; = 4 SECONDS

103



10

——

o
. k*mli!‘

i, ey

Y
T

o

f—

Il
I

104

FIGURE 47. RESPONSE OF LIQUID TO RECTANGULAR
PULSE OF DURATION (a = 1) t; = 4 SECONDS

sec



s

o L L L 'j i %"“
HEEREEIG T T
sof JRUTLITE DU M AN RIRARERIR L L DL s
I MRS R IRie ’“tuﬁ'JfJ
A L 1 iR AR Jiditn 053
. | ! ' ]
H- ) 3 -
; 1 R}
i - 1t
s ] | } i
I J
INE Y 1 |
‘JL IR RR Mt
WL l 38 ﬂi X 1< | | 4+
TR YR
| : 7 IL— >: ;|_‘ J Hr hT-
L TR
|11 B ]
[ | ] o b p El 1 JIRINIE 1
1]
- 1 3 H HH ' ]
dls
- 8] J‘J 1] 1
1] ] q*“% T
- il 1] 1w
L il - — - .—*__
iRl i |
- r—rr{-»— | T l +
H it o e R 1o
b 1 ll ; 1 | i
A HT T TR T s SRS

FIGURE 48. RESPONSE OF STRUCTURE TO RECTANGULAR
PULSE OF DURATION (o =1) t; = 10 SECONDS

105



-
- T — -  am -
—_———— R L..IolvTLlnv...w!Lll_,liglsT‘?l‘ b e e e . . . —d— s ¢ .-
.Jllllo.lfnlrl R e e e o SOV AN .o o O S T SR . - e . -
S e e et ST EES MY AT S S SOV UT S S o gt e FURPER [ - -

« SR : — =
3 4 — _ — e e e o e e VU NS R -
N ; — e e v g -+ [
. : B U o N S
" ' £ h : .
; + 4 + :.‘Mv e e
I . - ‘ R i
- } B e e DY R
H . I ! i ; i t\&\l&\‘:w
L A : . & - ;
: ! ; <r N e . w } " »_B\Y\i-‘w\t\”\: et
- i + : 4 I s { .
— m DR I P | e .
— | — 8 i
1 t | \.\4‘\?\4\ - t
I 4 L™ Ly
. A , _ u . i
: . I N ! i ] it
i T HI : '
—_ + — I T — " I — m 1
. i NI e ™Y [ H it i M :
| I N R ol : N N .
. — - — —t— - £ + i
FE N A ! ; sS4 !
I [ ; I [ i b P o } L
M i | ! ) H M . : w 7[!.' N . X
M \m’ + - i i i, + S, i 1
H 4 -+ hal ? 1
4L } + 1 T, I + —+ T - . S [ |
e ! RN 0 S oy
; i ! ! H HE | *_ HEIN — . | 1
H i i L T N 1 - | ! i 1
BN ) 1 ! 1 i o N NP .
' + _ b “ _ _ _ ; I M M * H .Ll\..\l.
: X . i | ; L R . I
+ } + — —
. i : i . |
i il A N A O R ™ L ; .
— * —t— S I f ’ i T i
+ i " ; 1 ) L’; 4 " + + —
; — il ; | 1o, — :
Ll i | il : - e | ) P I
T , Tt — — T f
i X u L " 4 ——t }
M R Ll Ly I HERY .l , R
AN _ A - R T O
; ! ; ! ——— - L] [ ; } L
= e e R
L {4 { H | | { ’ g
Z - B S D S S IO 00 I L -
VR _ : m ! 0 ) —
Y R L L i ! X e .
e | ; L PN I ; N
el I | e |, | ,, i i i i
+ " T I Y f N T
) A + ) il H
| | L L | - 1 ;
I | - — [ R D |
m ! PR 0 O A A —
+ + — t t t
+ —t - . + +—+
} . 1 3 RN G
0 A T . DD ERN
. S T A T
- - ) - . .
S 2 * . _ v ?

10 SECONDS

RESPONSE OF LIQUID TO RECTANGULAR

PULSE OF DURATION (a =1) t;

FIGURE 49,

106



[E——

T
t
+
|
s
I
—+
o

{—
- T

————

sec

FIGURE 50. RESPONSE OF STRUCTURE TO RECTANGULAR
PULSE OF DURATION («a = 2) t; = 2 SECONDS

107



.'ﬁ‘g]

s
t -
1+
-1
) 11
- ’» -
)
/ A
2
i Al
: sy
:
]
i
A f ]
. o p D ABE 1 1 BBE
-y _] T
+ 1 T _L_ —4~:>‘ . —_‘
| A I
il X
— ’ + 4+ - 4
(111 [ | [
] I u Y .
- 44 t
sec
FIGURE 51. RESPONSE OF LIQUID TO RECTANGULAR

108

PULSE OF DURATION (a =2) t; = 2 SECONDS



-1

-4

.lzjly

RiERE!
g L
J g
1A
iK1
LT
i
T
i
%
B
il
1iF
plid
i
P » A
T ad
-
-
BRNE
T T ]
FIGURE 52.

r, -
inn
an
| 1
Ar_‘.
FHTH
) T
1.
. L4
b [ A D [l o il A b A " |
SR W N RY V) ) ¥
-
<+ +— -4
-l 4
N 'Fl
1417 :é
I S I O B 4]
INENE
| SRR EEREN
11 . {4 —+4 — * <+
|1 1t
B EE A § -4 44
sec

RESPONSE OF STRUCTURE TO RECTANGULAR
PULSE OF DURATION (a =2) t; = 4 SECONDS

109



.”jl&’

LT
: ]
T
i
N*L T
e
e ol
e il
Biitnr e
-
i
i
- t
M.
R
=5

amumEE

,, T
e e,

~ =
T +
| 5
1
it ~—
" =
i * L
[ S

=
'
+
[

NN
; +—

| -
1

1111
|
L
w‘&HE‘*Nl
o
*P.—WWT “1 ) .v )
AN T
T + 4 —
2
\*-sh
8-
g

T

-
T
11
=
T
I
—
e
| e
T

—

| 3o . 3 . . |
L + ¢ t + - - .
-+ g -+ 4 o L - 44 . 1
L L -4 44+ L4+ 4+ 4 + F - g -+ - + 1+ +1 t L L
L 4 R R +1-+ 1- - o o — - b 1 144
4 -4 4 4+t F -+ 4t B + L
-9
T

HEHAHEH T T SZERIRERE

,
et oy e

THRA T

——t

sec

FIGURE 53, RESPONSE OF LIQUID TO RECTANGULAR
PULSE OF DURATION (« = 2) t; = 4 SECONDS

110



——4—
-4

sec

v+ ——

114

e e B G e

= m———

— —— . —

PULSE OF DURATION (a =2) t; = 10 SECONDS

* . == =

— » ol My,

= \Hmmull-‘

e

FIGURE 54. RESPONSE OF STRUCTURE TO RECTANGULAR

o N ——
L= =t had
e —— ~ S Em————,
grom— =i |
; et : - = *
f A=) = A — ] e
————— SR ——

______




i % |4
: )f..llf..lk +
e
Jolnan ™
.
L n By
i .
l.r..r..dj
[
* %
; 4
m —
1 ¥ e e
I — e ®
..__ g A
T
N il — %
el
"
o
T i 2
X
fo.,
! W
S il
iy oy
. J...I../:, -
: e
MY -
_ e R
i
: — : —3
, _ B - ——
: ; b R S
, _ e B e AR
, s _ N R et
. ] — L - | | R .
— il 1 — ] ! | ; ] X , an_L —
D R AP B A NS O A A A ! | ) T
— —— et :i?»__\._\:_ ey T “ NN IR
; I ot ) T ]
: il | ) ] L
\1\.\;\1.-\_ ! W ; ] - ! IR
\s\l...\,:-\\! ) L | 1 IR .
= i I H i | ] L . |
- . : — | | | T i !
I S
'y ! — - R
. . — el ;
N - ) 1 1
| . ; | | : ! 1 !
I Ty H 1 +— =t 4
1 - i » ] J ! ] 1
L j e P H ; _
N F
| [ N .
i
1 H
T W
NI = Py . » [ -

sec

RESPONSE OF LIQUID TO RECTANGULAR

FIGURE 55.

10 SECONDS

PULSE OF DURATION (o = 2) tq

112



= 3 T
f——
i I
eyt
Dk w L
i
!
_ —
. =
— -
— =
7 —
——— ==
—— ; e ]
==
,_‘ = D L ————_—
e —— = ——e—
= S
N
! :
, frm— e | (—
e e
s
" —
de=r ——
———t
B e e e et e ——
——— e
- e s
e e e - o ———— *
- e -
— —— gt
e e e e —
» o e e e
— m S — = —
i - e e — ==
— —_—
S e et e et et et
e e —
e e e e — N
I e P — o
: n m"n“ull =¥
; = —— ==
- p——— e e ———
- = —h
e e
e e ——

P —
R —————r S G

l.lmlﬂl_ll — =
=y —
1 -+

P

I~

Z1_ =y llllll-ﬂ“m_’ =

-

sec
113

RESPONSE OF STRUCTURE TO RECTANGULAR

PULSE OF DURATION (a =5) t; = 2 SECONDS

FIGURE 56.



&

+>

1 Y - T Y 11{”'1 T
b e i e J'A[ul.l[lr) 4.%%‘: U T Y
et ~

e

B i et S S N U VO U U

—

C e h b e e

B e St S S —

T T
iﬁtkvyi|¢l:r + .
T i

! + *lr et
W
—— 4
wifwfl :
' . , ..’ft/.fhk .
| . ] — % DS .
i J,fZi. -
, B W ; I
1 ktm_nmw
w 8 ) i
; s e
| : ) o
. i | \IT‘\J
: —r e .
H e b .
w - ;
“ i ﬂ _
0 3
C , e
, e A ) : -
, ’ e : - : ;
- L i | ) |
» ; }— I : H
1 N i ! .
. oy :
4 el P~ N
+ L . ;
— X i N 1
. } ﬂ ) i i “ ] 4 4»\
. - s — / , )
_ R P HE ! | | :
P | ] _ el P { |
. i [ . . 4. 1 . . H r
4+ 4 4 Kr i i N ;[_11
. —1 | o L - f N
m I LL«L-\.:\ ] 1 L .
N _ . \x\r\“\ . o . p | —
— e e =
4 ol PO — i '
1 [ it ] . R [0 - N t——
T H . N N N ” ) ! i -
T , flrp“ [ IR 1 ) R
_,[_ L ! Ll T ] i W P R -
— i H i T R N A
i : . e, ; I s 1
, D\ B
™ 4 i ,‘T :
| L | |

sec

5) t; = 2 SECONDS

RESPONSE OF LIQUID TO RECTANGULAR PULSE

OF DURATION (o

FIGURE 57,

114



.........

sec

115

HERY

TIH:{
Il
]

{
FWIII-'
= MMHE

r ¢ Jﬂju = i “‘,_
== ,,Iu.._m _\mMMMﬂH- ‘__“h )

e

X -]

S ———

e
; | e
e e = ———
e ST e e
- —
]
—— e e e
——— =
o -
=T
—
———————— -
* o ettt e ety
HE== et e s e
K === == == . -
= = E-a s el _
e et e e e e = == x
e e —— i =%
— e ot e s s - —_
———— e e e e e e s
R e e e e T R R ] e e — et
, S
e S e - s * — *
m—— e g e
———
M ——— e o e el g
s e = —
=== —
e e e e e e e e
- R e e e e o
——
L8 e e o e Mt P e e L
* R e ,
R ———
e s —

e

T
i
J

-

-1
-2

FIGURE 58. RESPONSE OF STRUCTURE TO RECTANGULAR
PULSE OF DURATION («a =5) t; = 4 SECONDS



N

T 2
o | [ [ L 1)
<5 . | . L Q
LY , 5 I
i % L ——
My ey Ll
r". . i , +
T —— X ; S
. 1![1'.[.". n’n m " ﬁ 7
m ].I...[.ll - Tt ,ﬁ
.y T A
e N |
L2 TN mm g
e —7 ] &
ol |G} w
.\_i\_‘t\\xlt Z -
—
= by
L — il C \LH
e M 1o
e = o I
=3
TS - Z
———— , <g=
T | =i
; RS - 2t
” r . " F U
e o o [m)
| . — B [
e w0 e}
! Mv.l! Z
! S5
. 53
\.L..\!«‘;..\..‘.i\.J 4 j I Mo
e — et + s A
N { * L_ Y
— . L L =]
= h - . | e w
&
r, r f—t— Jae
ﬁ =i w U
= * . S
- Ry
-
L] -

-1
-2

116




sec

117

1

Ht

et e e e

PULSE OF DURATION (a =5) t; = 10 SECONDS

1 i

L

FIGURE 60. RESPONSE OF STRUCTURE TO RECTANGULAR

4001
14
| ﬁ:

di

o] iy ot



118

F Y
[T BEN! fr 1 |
i : ‘% [T
.»« . b b 1- ;4 .
[ | / Bt | | ;
4+ ¢ 1 = .
EREEN f ' % , i I
| | AN
ERpNNEE \ HAH \ (T 1Y
j / x 14 ;
T / Vi vl
] \« ] 9 [
ml 3 3 ANRE2 ix 1p 1 u]l :r | EF '% —‘* ? ’? 3l
ERNNN RERRNLIEE f ) ]
* . { \ /
s Ai{ ?Z kxs /f
T T R _ _
FEHETH TN N
1] SelEaisnaniaigiinetad N T
2] i T i mj} L
FIGURE 61. RESPONSE OF.STRUCTURE TO RECTANGULAR

PULSE OF DURATION (a = 5) t; = 10 SECONDS

NASA-Langley, 1966 M~—T756




“The aeronantical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of
importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribu-
tion because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection
with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA
activities. Publications include conference proceedings, monographs, data
compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech-
nology used by NASA that may be of particular interest in commercial and other
nonaerospace applications. Publications include Tech Briefs; Technology
Utilization Reports and Notes; and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546




